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Integration of vectors

If two vector functions             and               be such that  

then               is called an indefinite integral of             with respect to 
the scalar variable t and  can be written as 

where c is an arbitrary constant vector.

It’s definite integral is 
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Problem:

If                                                                            then evaluate

Sol:   
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Line Integral

If                                                 where f, g,h are functions of x, y, z and

,then

is called line integral of       over c, where c is an curve in space
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Workdone by a Force 

If        represents the force acting on a particle moving along an arc AB, 
then the total workdone by force        during the displacement from A 
to B given by line integral 

i.e.,  if                                           and 
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Problem:

Find the workdone by a force                                                                              
which moves a plane  in xy-plane  from    (0,0) to (1,1)     along   the 
parabola 

Sol:   Given parabola                  in xy-plane 

Hence z=0 

Workdone=
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Problem 2:

Find the workdone by a force                                          ,when it moves a 
particle along the arc of the curve                                                    from

to            

Sol:   Given 

Hence 

now,
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Problem 3:

Find the workdone by a force                                                                             
along the straight line from  (0,0,0) to (2,1,3)

Sol:   Given,                

Equation of line OA is 
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Workdone along the line O(0,0,0) to A(2,1,3) is given by 
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Problem 4:

Find the workdone by a force                                                                     
along the curve                                           from t=0 to t=1

Sol:   Given,

and curve
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• Work done=
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Conservative force field 

If                          ,the field is cosevative, i.e., no work done in 
displacement from a point a to another point and back to a(i.e., work 
done is independent of the path .

Hence every irrotational vector is consevative and there exists a scalar

such that                     and  this      is called scalar potential 

0= rdF


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PROBLEM:

Show that                                                                                     is 
conservative and find work done  by a moving particle from 

(0,0,0) to (1,1,1)               

Solution: Given,
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So, F is irrotational, hence F is conservative 
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.
A vector F is conservative if their exists a scalar function 

such that F= .

Let be a scalar function then,
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F= ഥ ഥ ത
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Comparing on both sides ,we get

which is our required scalar potential                                                           
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Workdone from O(0,0,0)  to  A(1,1,1) is given by 
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Practice Problem

1.Find the workdone by a force                                                                     along 
the curve                                                    from t=0 to t=1

2. Show that                                                                                               is 
conservative and find work done  by a moving particle from 
(1,-1,2) to (3,2,-1)               
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CIRCULATION:-

If ҧ represents the velocity of a fluid particle and C 
is a closed curve, then the integral ׯ ҧ ҧ is called the 

circulation of ҧ round the curve C.

If ׬ ҧ ҧ then the field ҧ is called 

conservative, i.e., no work is done and the energy is 
conserved..
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1) If ത ത ഥ evaluate  ׯ ത where 

curve  c  is the rectangle in  xy plane bounded by 
y=0,y=b,x=0,x=a.

Sol:)

Given   ത ത ഥ

ҧ ത ഥ ത

ത ҧ

׬ ത ҧ ׬
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(i)Along the line OP: 

y=0 and dy=0 and x varies from 0 to a.

(ii)Along PQ:

x=a => dx=0 and y changes from 0 to b.
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(iii) Along QR:

We have y=b => dy=0 and x changes from a to 0.

(iv) Along R0:

x=0 =>dx=0 and y varies from b to 0.

Hence substituting  (i),(ii),(iii) and (iv) in equation (1) we get,
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2) Compute the line integral ׬ round the 

triangle whose vertices are (1,0),(0,1),(-1,0) in the xy-plane.

Sol:) Let A=(-1,0), B=(1,0),C=(0,1)

Equation of AB (x-axis) is y=0

Equation of BC is x+y=1

Equation of CA is y-x=1

׬
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(i)Along the line AB: 

y=0 => dy=0

׬ ׬

(ii) Along the line BC:

x + y =1 => y =1 – x dy= - dx

= +
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(iii)Along the line CA:

=0 =0

Hence the required line integral

= 0 - 2/3 + 0

= -2/3   [using(1)]…
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3) Evaluate the line integral ׬

where c is the square formed by the lines x= and y = .

Sol:)

Here ׬ ത ҧ ׬

In the counter clock-wise direction
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׬ ത ҧ ׬ ത ҧ ׬ ത ҧ ׬ ത ҧ ׬ ത ҧ …(1)

Along AB:

Here y= -1.  dy=0.

=2 …(2)

Along BC:

Here x =1.  
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=2 =2[1+ =

Along CD:

Here y=1.  dy=0.

=

=(-1) …..(4)       
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Along DA:

Here x= -1.    dx=0.

׬ ത ҧ ׬

׬(1-)= ׬

=(-2) (-2)[1+ =-

Hence the required line integral in the counter clock-wise direction 
is 

׬ ത ҧ ,  using (1)…..



4)If ത ത ഥ evaluate ׬ ത ҧ where C is the curve 

y=2x2 in the xy plane from (0,0) to (1,2)

Sol:) Given ത ത ഥ

ҧ ത ഥ ത

ത ҧ

C is the curve  y = 2x2

dy = 4x dx             

x   :   0 1
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=

=

=

= …….
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5)If ത ത ഥ evaluate ׬ ത ҧ
along the curve C in the xy plane y=x3 from (1,1) to (2,8)

Sol:)     Given ത ത ഥ ….(1)

Along the curve y=x3 ,dy=3x2 dx

ത ത ഥ [Putting y=x3 in (1)]

ҧ ത ഥ ത ഥ

ത ҧ ത ഥ ത ഥ)

= dx+
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= (6x5+5x4-12x3-6x2)dx

Hence  

= 

=

=16(4+2-3-1) - (1+1-3-2)

= 32+3=35….
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Surface integrals :
Let ത ҧ ҧ ത where , , are continuous and 
differentiable functions of x, y, z. 

Then surface integral is ׬ ത ത

Where ത is the unit outward normal vector

Along xy-plane normal vector is ത

Along yz-plane normal vector is ҧ

Along zx-plane normal vector is ҧ
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NOTE:

Let be the projection of S on xy- plane . Then 

Similarly, 

Let be the projection of S on  yz- plane . Then 

Let be the projection of S on zx- plane . Then 
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1) If ത ҧ ҧ ത evaluate ׬ ത ത where S is the surface of 
the cube bounded by x=0, x=a, y=0, y=a, z=0, z=a.

Sol:  consider the volume within the cube PQASCRBO in figure bounded 
by x=0, x=a, y=0, y=a, z=0, z=a.

Here ത ҧ ҧ ത

Let us calculate ׬ ത ത for each face of the cube. 
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.I) Along the face OCRB, it is in yz-plane

X=0,  ds= dydz,  ത ҧ

ത ത

II)Along the face , it is in yz-plane

X=a,  ds= dydz,  ത ҧ

ത ത

.
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III) Along the face OAQB, it is in xz-plane
y=0,  ds= dxdz,  ത ҧ

ത ത

IV)Along the face , it is in xz-plane
y=a,  ds= dxdz,  ത ҧ

ത ത
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.V) Along the face OASC, it is in xy-plane

z=0,  ds= dxdy,  ത ത

ത ത

VI)Along the face , it is in xy-plane

z=a,  ds= dxdy,  ത ത

ത ത

.
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׬ ത ത ׭= ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത

= 0+ + 0 + 0+ 

= 
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2) If ത ҧ ҧ ത evaluate ׬ ത ത where S is the surface 
of the parallelepiped bounded by x=0, x=2, y=0, y=1, z=0, z=3.

Sol:  consider the volume within the cube PQASCRBO in figure bounded 
by x=0, x=2, y=0, y=1, z=0, z=3.

Here ത ҧ ҧ ത

Let us calculate ׬ ത ത for each face of the cube.
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I) Along the face OCRB, it is in yz-plane
X=0,  ds= dydz,  ത ҧ

ത ത

II)Along the face , it is in yz-plane
X=2,  ds= dydz,  ത ҧ

ത ത

.
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III) Along the face OAQB, it is in xz-plane
y=0,  ds= dxdz,  ത ҧ

ത ത

IV)Along the face , it is in xz-plane
y=1,  ds= dxdz,  ത ҧ

ത ത

9(2)=18
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V) Along the face OASC, it is in xy-plane

z=0,  ds= dxdy,  ത ത

ത ത

VI)Along the face , it is in xy-plane

z=3,  ds= dxdy,  ത ത

ത ത

.
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׬ ത ത ׭= ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത

= 0+ 6+ 0 + 18+ 0+ 6

=30
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3) Evaluate ׬ ത ത , where  ത ҧ ҧ ത and S is the curved 
surface included in the first octant between z=0 and z=5.

Sol: Given surface S is the curved surface ABCEA.

Let 

Normal to the surface S is grad

Normal vector = grad = = ҧ + ҧ +ത

ҧ ҧ ത

Unit normal vector is ത
ҧ ҧ ത

ҧ ҧ ത
=

ҧ ҧ ത

=
ҧ ҧ

= 
ҧ ҧ
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Consider the curved region R: OBCD

Let R be the projection of S on  yz- plane . Then 

ത ത= ( ҧ ҧ ത).(
ҧ ҧ

)= 

ത ҧ= (
ҧ ҧ

). = 

For the surface in the yz-plane , x=0 

Z limits are 0 to 5

Y limits are 0 to 4
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) dy =  
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4) Evaluate ׬ ത ത , where  ത ҧ ҧ ത and S is the 
curved surface 9 included in the first octant between z=0 
and z=2.

Sol: Given surface S is the curved surface ABCEA.

Let 9

Normal to the surface S is grad

Normal vector = grad = = ҧ + ҧ +ത

ҧ ҧ ത

Unit normal vector is ത
ҧ ҧ ത

ҧ ҧ ത
=

ҧ ҧ ത

=
ҧ ҧ

= 
ҧ ҧ
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Consider the curved region R: OBCD

Let R be the projection of S on  yz- plane . Then 

= ( ).( )= 

ത ҧ= (
ҧ ҧ

). = 

For the surface in the yz-plane , x=0 3

Z limits are 0 to2

Y limits are 0 to 3
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PRATICE PROBLEM

1. Evaluate ׬ ത ത , where  ത ҧ ҧ ത and S is the 
curved surface included in the first octant between z=0 
and z=5.



Volume  Integrals

If                                                        be a vector point function defined 
over volume V so that                           then the volume integral is given 
by
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Problem:

If                                                             then find the volume integral of 
over the region bounded by

Sol:  Given,
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Problem:

If                                                        then find the  volume integral over the 
region bounded by

Sol:  Given,
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Problem:

If                                                    then  evaluate 

where V is region bounded by

Sol: Given, 

kzxjyzixyF ++=

xzzyyxx ====== ,0,1,0,2,0
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 
V

dvFi)(  
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
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x y
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Now,
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Problem:

If                   then  evaluate                  where V is region bounded by

Sol: Given, 

The limits are:

to

to

to

x2=

422,0,0,0 =++=== zyxzyx
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Practice Problem

Evaluate               when                                            where V is the region 

bounded by                                                                                                                  

kzjyixF ++=
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4,0,1,02,0 ====== zzyyxx


V

dvF



Green’s Theorem:-

If R is a closed region in XY- plane bounded by a 
simple closed curve C and if M and N are continuous 
function of x and y having continuous derivatives in R, 

then 



1) Verify Green’s theorem in the plane for 

׬ where c is a square with 

vertices (0,0), (2,0), (2,2), (0,2).

Sol:)

Green’s theorem is



Here M=   x2-xy3           N=  y2-2xy

L.H.S:-

׬ ׬ ׬ ׬ ׬

Along OA: y=0 =>dy = 0,  x : 

Along AB:   x=2 =>dx = 0,   y : 



=

Along BC: y=2 => dy=0  x : 

= 

Along CO: x=0 =>  dx = 0    y :



=

= 8



R.H.S:-

M=   x2-xy3           N=  y2-2xy

=

= 



=

=

= = -8+16 =8                    

L.H.S=R.H.S

Hence Green’s theorem is verified..



2) Verify Green’s theorem for ׬ where c is 

Bounded by y=x and y=x2

Sol:)

Green’s theorem is

L.H.S:

׬ ׬ ׬



y = x       y = x2

x = x2

x2-x = 0 

x(1-x)=0

x = 0 , x = 1

x = 0 => y = 0

x = 1 => y = 1

Intersection points are  (0,0) , (1,1) 



Along c1:

y=x2 => dy =2x dx 

x : 0

=



Along c2:

y = x => dy=dx      x : 

=

׬ ׬ ׬

=



R.H.S:

M=   xy+y2           N=  x2

=

=



=



=

L.H.S = R.H.S

Hence Green’s theorem is verified..



3) Evaluate Green’s Theorem ׬ where  c 
is the triangle enclosed by the lines y=0,  x= ,

Sol:)

Let   M=  y- N=

By Green’s theorem





=

=
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Gauss divergence theorem:

Let S be a closed surface enclosing a volume V. If ത is a 
continuously differentiable vector point function, then

Where ത is the unit outward normal vector 



Aditya Engineering College(A)

1) Evaluate׬ ത ത , if ҧ ҧ ത over the tetrahedron 
bounded by x=0, y=0, z=0 and the plane x+ y+ z =1.

Sol: From Gauss divergence theorem

׬ ത ׬ ത ത

Given, ҧ ҧ ത

ത = ത

( ҧ + ҧ +ത ). ( ҧ ҧ ത)

= + +2 

= y+ 0+ 2y = 3y
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Given curve is the tetrahedron bounded by x=0, y=0, z=0 and the plane 
x+ y+ z =1

z limits 0 to 1- x – y

Y limits 0 to 1-x

X limits 0 to 1

Hence   ׬ ത ത ׬ = ത

dydx
x

x

y

yx

z
yz 
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−

=

−−

=
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2) Verify Gauss divergence theorem for ത ҧ ҧ ത taken over 
the surface of the cube bounded by the planes x=0, x=a, y=0, y=a, z=0, 
z=a.

Sol: From Gauss divergence theorem

׬ ത ׬ ത ത

Given, ҧ ҧ ത

ത = ത

( ҧ + ҧ +ത ). ( ҧ ҧ ത)

= 4 + 

= 4z-2y+ y = 4z-y
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Given surface is  of the cube bounded by the planes x=0, x=a, y=0, y=a, 
z=0, z=a.

z limits 0 to a

Y limits 0 to a

X limits 0 to a

Hence   ׬ ത ത ׬ = ത

dzdydxyz

a

x

a

y

a

z

  
= = =

−=
0 0 0

)4(
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Verification:

consider the volume within the cube PQASCRBO in figure bounded by 
x=0, x=a, y=0, y=a, z=0, z=a.

Here ത ҧ ҧ ത

Let us calculate ׬ ത ത for each face of the cube.
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.ത ҧ ҧ ത

I) Along the face OCRB, it is in yz-plane
X=0,  ds= dydz,  ത ҧ

ത ത

II)Along the face , it is in yz-plane
X=a,  ds= dydz,  ത ҧ

ത ത

.
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ത ҧ ҧ ത

III) Along the face OAQB, it is in xz-plane
y=0,  ds= dxdz,  ത ҧ

ത ത

ඵ ത ത

IV)Along the face , it is in xz-plane
y=a,  ds= dxdz,  ത ҧ

ത ത
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.ത ҧ ҧ ത

V) Along the face OASC, it is in xy-plane
z=0,  ds= dxdy,  ത ത

ത ത

VI)Along the face , it is in xy-plane
z=a,  ds= dxdy,  ത ത

ത ത

.
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׬ ത ത ׭= ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത ׭ ത ത

= 0+ + 0 + 0+ 

= 
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3) Evaluate׬ ത ത , if ҧ ҧ ത over the tetrahedron bounded 
by x=0, y=0, z=0 and the plane 2x+ 2y+ z =4.

Sol: From Gauss divergence theorem

׬ ത ׬ ത ത

Given, ҧ ҧ ത

ത = ത

( ҧ + ҧ +ത ). ( ҧ ҧ ത)

= + + 

= 2x+ 0+ 0 = 2x
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Given surface is the tetrahedron bounded by x=0, y=0, z=0 and the 
plane 2x+ 2y+ z =4

The limits are:

to

to

to

0=z yxz 224 −−=

0=y 2/)24( xy −=

0=x 22/4 ==x
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4) Apply Gauss divergence theorem, prove that ׬ ҧ ത =3v.

Sol:

Let ҧ ҧ ഥ ഥ and we know that div ҧ

From Gauss divergence theorem,

Hence, ׬ ҧ ത ׬ = ҧ

׬= = 3V



PRATICE PROBLEM

1.Using Gauss divergence theorem, Evaluate ׬ ത ത , where  ത

ҧ ҧ ത and S is the surface included in the 
first octant between z=0 and z=5.



Stoke’s Theorem

If S is a open surface bounded by a closed curve C and        is any 
differentiable vector point function then

where C is traversed in the positive direction and        is  unit outward 
drawn normal at any point in the surface
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dsnFcurlrdF
SC

. =

F

n



Problem
Verify Stoke’s theorem for                                                      taken round 
the rectangle bounded by the lines

Sol: Let ABCD be a rectangle formed by the lines

By Stoke’s theorem,

Given 

Aditya Engineering College(A)

dsnFcurlrdF
SC

. =

jxyiyxF 2)( 22 −+=

n

byyax === ,0,

byyax === ,0,

jxyiyxF 2)( 22 −+=



Given,

Consider L.H.S 

(i) Along AB, x=a,dx=0

From (1),
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jxyiyxF 2)( 22 −+=

n

}{}2){( 22 dyjdxijxyiyxrdF
cC

+−+= 

xydydxyx
c

2)( 22 −+= 

)1(→+++= 
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=
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b
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0

2



(ii) Along BC, y=b,dy=0

From (1),
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(iii) Along CD, x=-a,dx=0

From (1),

(iv) Along DA, y=o,dy=0

From (1),
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Consider,
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 =
S
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Since the rectangle is in xy-plane

L.H.S=R.H.S

Hence Stoke’s theorem is verified
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Problem
Verify Stoke’s theorem for                                                                           
over the upper half of the sphere                                 bounded by the 
projection in xy-plane

Sol: The boundary C of S is the circle in xy-plane

By Stoke’s theorem,

put
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Consider L.H.S 

),
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Consider L.H.S 
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Consider,
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Problem
Evaluate   by Stoke’s theorem                                                   where  C is 

the curve 

Sol: we have, 

Then

By Stokes’s theorem,
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Consider,
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Hence
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Problem
Evaluate   by Stoke’s theorem                    where  

and C is the boundaryof the trainglewhose vertices are (0,0,0), (2,0,0), 

(2,2,0)

Sol:  Since z-coordinate of each vertex is zero , the triangle lies in xy-
plane 

By Stokes’s theorem,
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Consider,
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Since the projection is in xy-plane,
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Practice Problem

1.Verify Stoke’s theorem for                               round the                                                                 
square in the plane z=0 whose sides along the lines x=0,y=0

x=a,y=a

jxyixF += 2
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